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Abstract. We present a review of the basic theoretical ideas concerning unconventional
superconductors. These are superconductors with an order parameter which breaks the rotational
symmetry of the normal-state crystal; in some cases, time-reversal symmetry is broken as well.
The resulting novel broken-symmetry state should display many unusual properties, which can
be analysed at a variety of theoretical levels. We pay particular attention to the Ginzburg–Landau
type of theory, and to the more microscopic theory of a superfluid Fermi liquid.

1. Introduction

In this article we will review the basic theoretical ideas concerning unconventional
superconductivity. There has been a great development of such ideas in recent years [1, 2];
this development has been driven by exciting experimental discoveries of new classes of
superconducting materials. These classes include the high-Tc oxides [3], the heavy-fermion
metals [4–6], and the fullerene compounds [7, 8].

The term ‘unconventional’ refers to superconductors with order parameters which have
a lower rotational symmetry than the normal-state crystal. This broken rotational symmetry
may occur in real space, or in both real space and spin space, as will be illustrated in
this article. This definition of unconventional is based, then, on symmetry, not on the
mechanisms responsible for producing the superconductivity. A fundamental goal for
physicists is to elucidate the consequences of these novel broken-symmetry states.

Classifying and discussing superconductors on the basis of the symmetry of their order
parameters has some important advantages. The Ginzburg–Landau (GL) type of theory can
be developed in great detail, allowing definite predictions of experimental properties to be
made. If certain assumptions are valid, such as the normal state being a normal Fermi
liquid, then theory at a more microscopic level may be worked out, predicting in greater
detail the properties of a superconductor with an order parameter of a certain symmetry.
Just as for the GL theory, this can be done without specifying the underlying mechanism.

An analogy to this situation in another area of condensed-matter physics is the following.
Consider a material forming a BCC crystal. Without considering the mechanisms responsible
for this particular broken-symmetry state (i.e. the BCC crystal) we can discuss with varying
degrees of precision such properties as the x-ray diffraction pattern, the phonon spectrum,
and the electronic energy bands.

When the order parameter has a reduced symmetry, so, in general, will many properties
of the superconducting state. For example, in a cubic crystal whose order parameter has a
lower symmetry, the superfluid density tensor may not have cubic symmetry. In a sense,
effects such as these are perhaps obvious. However, recent theoretical work has led us to
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expect a variety of subtle and surprising effects when the order parameter is unconventional;
we will pay particular attention to such effects in this review.

For example, the GL theory of an unconventional superconductor can be much richer
than that of a conventional one, because the order parameter can have more internal degrees
of freedom. These degrees of freedom can induce intricate behaviour, for example atHc2,
or in the vortex core region; they even lead to the possibility of an unexpected instability.
Order parameters which break time-reversal symmetry are also possible. We can then have
unusual supercurrents and their associated magnetic fields, which have no analogue in the
conventional case. Finally, we mention that scattering by ordinary, nonmagnetic impurities
leads to an array of novel phenomena when the order parameter is unconventional.

The plan of this paper is as follows. Section 2 contains a general discussion of the
order parameter for a superconductor, paying particular attention to its behaviour under
spin rotations, space rotations, and time reversal. A clear grasp of these points is essential
to understanding these novel broken-symmetry states. In section 3 the fundamental ideas
of the Ginzburg–Landau theory are explained. One particular case of the GL theory is
covered in more detail in section 4, to illustrate the new features which can arise when the
order parameter is unconventional. In section 5 we briefly review the microscopic theory
of a superconducting Fermi liquid. Some specific calculations are then discussed, with an
emphasis on the new phenomena typical of unconventional superconductors.

2. The order parameter

2.1. Definition

The order parameter for a superconductor can be taken to be the energy gap, or off-diagonal
component of the self-energy,1αβ(k). It is a 2× 2 matrix in spin space, and a function of
k in momentum space, with the transformation properties of a two-electron wavefunction
[9, 10]. The Pauli principle forces1 to be antisymmetric:

1αβ(k) = −1βα(−k). (1)

Two points are important to make.

• For systems with spin–orbit coupling, we may regard the subscriptsα, β as pseudospin
labels [9, 10]. When a crystal has inversion symmetry, its electronic eigenstates for
a givenk are still doubly degenerate, even in the presence of spin–orbit coupling. It
is convenient to take the subscripts as labels of these two degenerate states. We may
always select linear combinations of these two states such that under spin rotations of
the point group,1αβ rotates according to the usual spin-rotation matrices. This point
arises in the context of the heavy-fermion superconductors, which have strong spin–orbit
coupling.

• Another choice for an order parameter is the quantity9αβ(k) = 〈akαa−kβ〉. This
choice is perhaps best if one wants to make the most minimal assumptions as to the
microscopic description of the superconducting state [11]. All the GL theory developed
in this chapter goes through with this choice for the order parameter.

We can always write1αβ in the following form:

1αβ(k) = iσy

αβ1(k) + id(k) · σαµσ
y

µβ (2)
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whereσ i
αβ denotes a Pauli matrix,1(−k) = 1(k), andd(−k) = −d(k). The singlet part

of the order parameter is given by1(k), while the triplet part is given byd(k). The d-
vector notation simply reorganizes the three triplet states. Instead of listing the coefficients
of |↑↑〉, |↓↓〉, and|↑↓〉 + |↓↑〉, we group them as follows [12]:

dx ⇐⇒ −(|↑↑〉 − |↓↓〉) (3)

dy ⇐⇒ i(|↑↑〉 + |↓↓〉) (4)

dz ⇐⇒ (|↑↓〉 + |↓↑〉). (5)

The quantityd then transforms as a vector under spin rotations.
The effect of time reversal on the order parameter is also important to study [9, 10].

Under time reversal,1(k) becomes1∗(k). Thus, if there exists a constantα such that

1∗(k) = exp(iα)1(k) (6)

then we say that the order parameter does not break time-reversal symmetry. If no suchα

can be found, then we say that1 does break time-reversal symmetry. Note that with this
definition, multiplying the order parameter by ak-independent phase factor does not affect
whether or not it breaks time-reversal symmetry. Similar considerations hold ford(k): if
for someα we have

d∗(k) = exp(iα)d(k) (7)

then we say thatd is invariant under time reversal.

2.2. The residual symmetry group

Even if an unconventional order parameter is not invariant under all of the operations
of the normal-state point group, it may still be invariant under some subset of those
operations. Knowledge of this subset, called the residual symmetry group, may permit much
understanding of the properties of the superconductor without any further specification of
the form of the order parameter [10, 13, 15]. To investigate this point further, it is instructive
to enlarge the scope of the term ‘operation’. Besides the usual rotations, inversions and
reflections, we can consider the operations of time reversal and of multiplying the order
parameter by a phase factor. For example, it can prove useful to know that an order
parameter is left invariant if we perform a certain rotation, and then multiply it by exp(iπ/3).

For a given crystal structure, theoretical arguments can be used to elucidate the possible
residual symmetry groups. For a triplet order parameter with negligible spin–orbit coupling,
the full symmetry group of the normal state is taken to be the following:

G = SO(3) × G × E × U(1). (8)

These correspond to the various operations that we may perform on the order parameter.
SO(3) is the full spin-rotation group,G is the point group of the crystal (acting onk), E
is the two element group containing the time-reversal operator and the identity, and U(1) is
the unitary group (i.e. multiplying the order parameter by a constant phase factor).

For triplet order parameters with strong spin–orbit coupling, and for spin-singlet order
parameters in all cases, the proper choice forG is

G = G × E × U(1). (9)

(For singlet order parameters with no spin–orbit coupling, we could include SO(3) in G,
but it is not necessary, since the order parameter will simply be invariant under all spin
rotations.) For any particularG, then, there are two questions that we can ask: (i) what are



1162 P Muzikar

the possible subgroupsH of G and (ii) for a givenH , what general properties of the order
parameter may we ascertain?

The answer to (i) has been discussed by several authors, and we refer the reader to
these articles [10, 13–15]. One type of answer to (ii) is that for certain subgroupsH it is
possible to prove that the order parameter must vanish on certain domains ink-space [10,
13–15]. We can use a simple example to show how arguments of this type work. Consider
the spherical harmonicY11(k̂). Suppose that we did not know the detailed form of this
function, but that we did know that under rotationsR(ẑ, α) about theẑ-axis, it behaved as
follows:

Y11(R(ẑ, α)k̂) = exp(iα)Y11(k̂). (10)

That is, a rotation about thêz-axis byα multipliesY11 by the factor exp(iα). Then, for the
specific choice of̂k = ẑ we have, for all values ofα,

Y11(ẑ) = exp(iα)Y11(ẑ). (11)

Thus we see thatY11(k̂) must vanish fork̂ = ±ẑ. As we will see, zeros of the order
parameter are important in microscopic calculations of quantities such as the density of
states.

2.3. The form of the order parameter

In this section, we discuss how the theory of group representations [16] can be used
to analyse the form of the order parameter. This formalism leads in a natural way to
the Ginzburg–Landau theory discussed later in this article. To start, we note that the
order parameter can always be expanded in terms of basis functions of the irreducible
representations of the crystalline point group. For a singlet order parameter we may write:

1(k) =
∑
µj

ηµjφµj (k). (12)

Hereφµj denotes thej th basis function of the irreducible representationµ. Thus, the set
of complex numbersηµj specifies the order parameter.

One may ask what determines the form of the basis functions. Recall that under a group
operationR we have

φµi(Rk) =
∑

j

D
µ

ij (R)φµj (k) (13)

whereD
µ

ij (R) is the matrix representing the operationR in the µ-representation. Within
this constraint, however, there are many possible choices for theφµi . As we shall see,
the detailedk-dependence of the pairing interaction determines the particular form of the
basis function. This pairing interaction contains all the complicated microscopic physics
(i.e. electron–phonon, electron–electron interactions) which gives rise to the Cooper pairing.
In general, then, it is an ambitious project to determine the detailed form of theφµi .

A recent paper [17] nicely clarifies the extent to which these basis functions are arbitrary.
Consider a particular irreducible representation,ν, which is `-dimensional. Then, there
exists a set of functionsψa

νi such that we can write

φνi(k) =
∑̀
a=1

F ia(k)ψa
νi(k) (14)

where the coefficientsF ja(k) are invariant under all operations of the crystal point group.
So, theψa

νj can be specified, and our ignorance is packaged in the functionsFja, which
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must however have the complete crystal symmetry. Yip and Garg tabulate these functions
ψ for some particular point groups [17].

As a concrete example of what this means, suppose we have a crystal with the D4h point
group, and that in the sum overµ in (12) only the (two-dimensional) Eg representation
occurs. (As we shall see, in many situations only one representation in fact occurs.) Then
we may write

1(k) = η1φ1(k) + η2φ2(k). (15)

This means that we may write the order parameter as follows:

1(k) = η1[FI (k)kzkx + FII (k)kzk
3
x ] + η2[FI (k)kzky + FII (k)kzk

3
y ] (16)

whereFI andFII are invariant under all point group operations.
The forms of the functionsFI and FII are determined by the details of the pairing

interaction, and are set by physics at relatively high energies. In contrast to this, the
complex coefficientsηj can be varied more easily, and can in fact vary with position when
the superconductor is inhomogeneous. Thus, for an inhomogeneous superconductor the
expansion (12) is generalized to the following:

1(k, R) =
∑
µj

ηµj (R)φµj (k). (17)

An important point concerning time-reversal symmetry is also addressed by Yip and
Garg [17]. They show that the basis functionsφµi can always be chosen to be real. Thus,
if 1 is given by (12), the time-reversed state is given by

1∗(k) =
∑
µj

η∗
µjφµj (k). (18)

The question of whether or not the order parameter breaks time-reversal invariance can be
settled by examining theη’s.

The discussion of this section is generalized in a straightforward way to triplet states.
The vectord(k) should be expanded as follows:

d(k) =
∑
µi

ηµiφµi(k) (19)

where theφµi are again basis functions as defined previously, but with vector coefficients.
Thus, for each̀ -dimensional representation, we have 3` complex coefficients.

When spin–orbit coupling is strong, for the triplet case we need irreducible
representations ofG, not of SO(3) × G. Then we may write

d(k) =
∑
µi

ηµiΦµi(k) (20)

where the vector functionsΦµi form an irreducible representation ofG.

3. Ginzburg–Landau theory

3.1. General remarks

One of the great virtues of the GL approach is that it allows us to construct a theory
of the superconducting state with very few assumptions as to the microscopic details of
the material. We start with the expansion of the order parameter in terms of the basis
functionsφµj , and expandf , the free-energy density difference between the normal and
the superconducting states, as a power series in the coefficientsη [15, 18]. At a continuous
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transition theη’s should be small nearTc, and so the theory is meant to be valid at
temperatures close toTc. The GL theory is a mean-field theory and so does not include
critical fluctuation effects, although it can be generalized to do so [15].

The important general principle is that all of the terms inf must be invariant under
all of the operations ofG, the group introduced in the previous section. The leading terms
that we can construct are then second order in theη’s. Group theory tells us that the only
quadratic invariants for a spatially uniform order parameter are (we consider here the case
of weak spin–orbit coupling)

f2 =
∑

µ

αs
µ(T )

∑
i

ηµiη
∗
µi +

∑
µ

αt
µ(T )

∑
i

ηµi · η∗
µi. (21)

The first set of terms corresponds to singlet order parameters, while the second set
corresponds to triplet order parameters. Microscopic theory is needed to compute the
temperature dependent coefficientsα(T ); at the GL level of theory, we assume a certain
general scenario for their behaviour.

At high temperatures all of theα’s are positive, sof is minimized by setting all of theη’s
equal to zero. As we lower the temperature, at a certain critical temperature, one particular
αµ, either singlet or triplet, goes through zero and becomes negative. It is then favourable
for the correspondingηµi ’s to be nonzero. So, close enough toTc the order parameter
should be a linear combination of basis functions from one particular representation. As the
temperature is lowered still further, other representations may be mixed in; if this happens
the residual symmetry groupH may or may not change. Note that ifH does not change,
the zeros of the order parameter enforced by the structure ofH (discussed in section 2.2)
do not change.

To complete the theory, we must add in the following types of terms.

• Invariants which are fourth order in theη’s.
• Gradient terms which are second order in both the order parameter and in gradients. In

these terms the gauge-invariant derivativeD appears, given by

D = ∇ + 2ie

h̄c
A. (22)

Our convention is thate is a positive number, so the electron charge is−e.
• The magnetic field term, given by

fB = (1/8π)[(∇ × A) − H]2 (23)

where A is the vector potential andH is the applied magnetic field. This is the
appropriate form if we are working at fixedH, with A varying with no constraint to
minimize the free energy.

When we have the full set of terms inf , the order parameter and magnetic field are
determined by minimizingF , the integral off , with respect to the order parameter and the
vector potential:

δF

δη∗ = 0 (24)

δF

δA
= 0. (25)

An important consequence of the second equation is the following. It leads to an equation
of the form

∇ × (∇ × A) = (4π/c)J (26)

and so allows us to identify the supercurrentJ .
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3.2. One-dimensional representations

In certain cases, the GL theory, even for an unconventional order parameter, assumes
exactly the same form as for a conventional order parameter [15]. We can then use the well
developed GL theory which has been studied for several decades. These cases include the
following.

(i) Situations in which the order parameter is a spin singlet, and transforms according to a
one-dimensional representation. We may then write

1(k, R) = η(R)φ(k). (27)

(ii) Situations in which we have strong spin–orbit coupling, and a triplet order parameter
of the following form:

d(k, R) = η(R)Φ(k) (28)

whereΦ is a (vector) one-dimensional representation.

Note that case (i) covers conventional singlet pairing, as well as the d-wave order
parameter being considered for the high-Tc superconductors. This order parameter is of the
following form [11]:

1d(k, R) = η(R)F (k)(k2
x − k2

y) (29)

whereF has the full crystal symmetry.
It is worth stressing that even for the conventional case, in whichφ(k) belongs to the

identity representation,φ(k) can still have a complicatedk-dependence, changing sign (or
phase) as a function ofk. Recent work, at the microscopic level, on such order parameters
includes [19, 20].

For any order parameter of type (i) or (ii), then, the GL functional takes the form

f = α|η|2 + β|η|4 + 1

2
KijDiηD∗

j η∗ + fB (30)

whereα(T ) = α0(T − Tc)/Tc, and the other coefficients are evaluated atTc. The details
of φ(k) have dropped out, except for playing a role in the microscopic calculation of the
coefficients. For example, ifφ(k) is conventional, the tensorKij will have the full symmetry
of the normal state. Ifφ is unconventional, this may not be true. We might mention that
recent work [21–24] has shown that the GL and London theories of superconductors with
anisotropicKij ’s can yield some surprising results.

4. Multidimensional representations—GL theory

4.1. Introduction

When more than one basis function appears in the expansion of1, the GL theory becomes
much more interesting. In order to illustrate the wide variety of new phenomena, we
concentrate on one particular case, a case which has been studied intensively in the context
of UPt3 [6, 25].

Consider a hexagonal crystal, with point group D6h, and with strong spin–orbit coupling.
Suppose that the pairing occurs in the triplet E1u irreducible representation. Then the order
parameter can be written as follows:

d(k) = η1(R)Φ1(k) + η2(R)Φ2(k). (31)
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The vector basis functions can be analysed using the results of section (2.3). It turns out
that under all the operations ofD6h, (η1, η2) transforms as a vector in thexy-plane; thus
we can use a vector notation:

η = (η1, η2) = (ηx, ηy). (32)

The free-energy density contains the invariants that we can construct fromη:

f = αη · η∗ + β1(η · η∗)2 + β2|η · η|2 + K1DiηjD
∗
i η

∗
j + K2DiηiD

∗
j η∗

j

+ K3DiηjD
∗
j η∗

i + K4DzηiD
∗
z η

∗
i + fB. (33)

The supercurrent is then given by

Ji = 4e

h̄
Im[K1ηjD

∗
i η

∗
j + K2ηiD

∗
j η∗

j + K3ηjD
∗
j η∗

i + K4ẑiηjD
∗
z η

∗
j ]. (34)

Several comments concerning this free energy are in order.

(i) In all of these terms, the implied sums oni andj are two dimensional.
(ii) Two independent fourth-order invariants can be constructed. Note that for a complex

η we can haveη · η = 0 for a nonzeroη; a positive value forβ2 will tend to encourage
this.

(iii) The gradient terms allow for a complicated interaction between the vector potential
and the order parameter. Consequences of this will emerge in future sections.

(iv) Details of the basis functions do not appear at the GL level of description. The
forms of theΦi (k) will, however, affect the microscopic calculation of the coefficients.

(v) A free energy of the same form also works for the E1g, E2g, and E2u representations
[6].

In the succeeding subsections, we will describe some of the interesting phenomena
which can occur in a superconductor described by this free energy. We will not review the
issue of whether this particular free energy is the appropriate one for superconducting UPt3.
For discussions of the various approaches being tried for this problem, see [6, 26, 27].

4.2. Homogeneous phases

We start our overview by considering which order parameters minimizef in the absence of
any spatial gradients or magnetic fields [6, 25]. We then must minimize the bulk free-energy
density given by

fbulk = α(η · η∗) + β1(η · η∗)2 + β2|η · η|2. (35)

First, note that we must haveβ1 > 0 andβ12 > 0 for stability. (We will use the notational
shorthandβ12 = β1 + β2.) Then there are two possibilities.

For β2 < 0, fbulk is minimized by an order parameter of the form

η0 = η0(1, 0) with η0 =
( |α|

2β12

)1/2

. (36)

In fact, fbulk is left unchanged if we rotateη0 by any angle in thexy-plane, or if we
multiply it by a phase factor. So, besides the usual phase degeneracy, we have an extra
rotational degeneracy. Part of this extra degeneracy is accidental, in that for D6h the free
energy is not required to be invariant under this continuous family of rotations; if terms of
sixth order inη are included in the free energy, then this extra degeneracy is broken, and a
discrete subset of this family of order parameters minimizes the free energy [25].
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If β2 > 0, the equilibrium order parameter is quite different. We then minimizefbulk

by using an order parameter of the form

η0 = η0(1, ±i) with η0 =
( |α|

4β1

)1/2

. (37)

For this state, the gauge and rotational symmetries are linked, since a rotation of the two
components is equivalent to multiplying the order parameter by a phase factor. This state
also breaks time-reversal symmetry; some consequences of this will be discussed in the
next section.

4.3. Internal angular momentum

We will now discuss an issue which can be called ‘internal angular momentum’ of the
Cooper pairs [1, 28]. To see what this means, consider the free-energy densityf . If we
integrate by parts on the gradient terms, we can rewritef as follows:

f = αηiη
∗
i + β1(ηiη

∗
i )

2 + β2|ηiηi |2 + K1DiηjD
∗
i η

∗
j + 1

2
K23(DiηiD

∗
j η∗

j + DiηjD
∗
j η∗

i )

+ ie

h̄c
(K2 − K3)(η × η∗) · B + KzDzηiD

∗
z η

∗
i + fB. (38)

Here,B = ∇ × A is the local magnetic field, and we use the notationK23 = K2 + K3.
The gradient terms have been rearranged to include a termfM , where

fM = ie

h̄c
(K2 − K3)(η × η∗) · B. (39)

This term has the form of a magnetic moment interacting with the magnetic field.
Another way to look at this idea is to examine the supercurrent. We can rearrange the

terms inJ to obtain the following expression:

Ji = 4e

h̄
Im

[
K1ηjD

∗
i η

∗
j + 1

2
K23(ηiD

∗
j η∗

j + ηjD
∗
j η∗

i ) + K4ẑiηjD
∗
z η

∗
j

]
− ie

h̄
(K2 − K3)[∇ × (η × η∗)]i . (40)

The last term, proportional to∇ × (η × η∗), has a form analogous to the∇ × M term in
the current in electromagnetic theory.

One consequence of this term inJ is the following. In the usual GL theory, discussed
in section 3.2, there is a supercurrent if the phase of the order parameter varies in space;
however, there is no current if only the magnitude varies. Here, the situation is different.
Consider an order parameter of the following form:

η(R) = η0(R)
1√
2
(1, i). (41)

That is, we have an order parameter of fixed phase and orientation, with a spatially varying
magnitude.

For this order parameter, the supercurrent does not necessarily vanish. It is given by

J = e

h̄
(K2 − K3)(ẑ × ∇η2

0). (42)

Thus, if the coefficientK2 − K3 is not zero, in many ways the superfluid behaves as if it
has an internal angular momentum. We will later discuss microscopic calculations of this
coefficient.
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4.4. Calculation ofHc2

To compute the upper critical field,Hc2, one proceeds as follows. Imagine that we apply
a very large external magnetic fieldH = H n̂, wheren̂ is a unit vector, so thatη = 0
minimizes the free energy. Then, at fixedT , we lower H until f can be reduced by a
nonzero order parameter. The value ofH at which f becomes unstable to the onset of
superconductivity is calledHc2(T , n̂). In a type I superconductor this continuous transition
is pre-empted: beforeH reachesHc2, it becomes favourable for the system to make a
first-order transition to the Meissner state.

To do the calculation, then, we need only the following part of the free-energy density,
which is quadratic in the order parameter:

fQ = αηiη
∗
i + K1DiηjD

∗
i η

∗
j + K2DiηiD

∗
j η∗

j + K3DiηjD
∗
j η∗

i + K4DzηiD
∗
z η

∗
i . (43)

Furthermore, in the operatorD we use the external vector potentialAex , such that
∇ × Aex = H. Screening effects are of higher order in the order parameter, and may
be ignored. Note also that the parametersβ1 andβ2 play no role in determining either the
value of Hc2 or the form of the order parameter right atHc2; these parameters will play
a role in determining the best way to combine degenerate order parameters belowHc2 to
form the vortex state. So, for a fixed value ofα(T ) and for fixed orientation̂n we need
to find the largestH at which a nonzero order parameter can makefQ = 0. Since the free
energy is a quadratic form inη, we can solve this by turning it into an eigenvalue problem.

For specificity, we consider here only the case wheren̂ = ẑ. The answer forHc2 is
then surprisingly complex [29, 30]. We have two separate cases, depending on the values
of the coefficients in the free energy.

(i) When

(K2 − K3)(2K1 + K23) > K2
23 (44)

we have

Hc2 = h̄c|α|
2eK13

(45)

and an order parameter given by

η = (1, −i)L0(x, y). (46)

Here,Ln(x, y) is thenth Landau level wavefunction for a particle in a magnetic field. For
any givenn there is a degenerate set of such wavefunctions; in addition, it should be noted
that their particular form depends upon the gauge choice forAex .

(ii) When the inequality goes the other way:

(K2 − K3)(2K1 + K23) < K2
23 (47)

we then have

Hc2 = h̄c|α|
2eλ

(48)

λ = 3

(
K1 + 1

2
K23

)
−

[
2K2

23 +
(

2K1 + 3

2
K3 + 1

2
K2

)2]1/2

. (49)

The order parameter is given by

η = (1, i)L0(x, y) + ω(1, −i)L2(x, y). (50)

Case (i) is similar to the usual result for a conventional superconductor, in that it involves
the lowest Landau levelL0(x, y); case (ii) involves an intricate combination ofL0 andL2.
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In both cases there is a high degree of degeneracy. Just belowHc2 we must construct an
energy-minimizing linear combination of these functions to obtain the vortex state. For
discussion of this, see [25].

4.5. Instability of the homogeneous state

We will now discuss an unusual scenario generated by the free energy (33), if the coefficients
are in a certain range [1, 31, 32]. The basic question that we consider is the following. In
the absence of an applied magnetic field, does a spatially uniform order parameter of the
type considered in section (4.2) really minimize the free energy?

We start by considering the following related issue: what are the allowed values for
the coefficients in the free energyK1, K2, K3, K4, α, β1, β2? That is, in the absence of a
microscopic calculation, can we use any general physical principles to put restrictions on
these parameters? One such principle that we will use is that the free energyf should be
bounded below. We have already noted that this means that we must haveβ1 > 0, β12 > 0.
It is easy to see, by considering situations in whichA = 0, that we must also have the
following:

K1 > 0 K4 > 0 K123 > 0. (51)

Whether these conditions are sufficient, as well as necessary, seems to be an open question
at present. Allowing for the presence of a nonzero vector potential in the gradient terms
makes any further progress in these arguments quite difficult.

Suppose now thatβ2 < 0, andH = 0, so that the order parameter that we will test for
stability is given by

η0 = η0(1, 0) with η2
0 = |α|

2β12
(52)

up to a rotation or multiplication by a phase factor. Let us analyse the stability of this state.
We can write

η = η0 + δη(R) (53)

A = A0 + δA(R) = δA(R) (54)

f = f0 + δf. (55)

Note thatf0 is evaluated usingη0 andA0 = 0, and thatδf will have no terms linear inδη
or δA; in δf we keep the second-order terms. Thusδf is a quadratic form inδη, δA.

When we analyse this quadratic form we find, as expected, that it has several zero
eigenvalues, corresponding to rotations and gauge transformations. The key question, then,
is that of whetherδf has any negative eigenvalues; if it does, then the order parameter (52)
is not the lowest energy state. The surprising answer is that, if the coefficients are in a
certain range, which does not seem to be forbidden on anya priori grounds, then there are
indeed negative eigenvalues.

There are two cases to consider, depending on the sign of the quantity

γ = K23

[ |β2|
2π

− 4e2

h̄2c2
K2

13

]
.

(i) If γ < 0, then negative eigenvalues appear if the following condition is met:

K2
3 >

[
K1 + h̄c

2e

( |β2|
2π

)1/2]2

. (56)
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(ii) If γ > 0, then negative eigenvalues appear if the following holds:

K2
2 >

[
K123 + h̄c

2e

( |β2|
2π

)1/2]2

. (57)

The corresponding eigenvectors have bothδη andδA nonzero. In a sense what happens
is that the order parameter distorts, a supercurrent is generated, and a magnetic field is thus
produced; this field interacts with the order parameter and achieves a lowering of the free
energy. With no applied field, the superconductor creates its ownB(R). The gradient
terms contribute a net negative total to the free energy.

The preceding stability analysis does not allow one to study the ultimate equilibrium
state. This has been done by using numerical relaxation techniques, and we refer the reader
to the literature [32] to see pictures of the new equilibrium state. One point that emerges
from the numerical work is thatf appears to be bounded below, for parameters chosen to
allow the instability. It also turns out, in a related phenomenon, that a magnetic field can
actually raise the transition temperature [33].

4.6. Structure of a single vortex

We now turn to the study of a single isolated vortex line; the energy per unit length of this
entity is the key input to computingHc1. More importantly, a surprisingly rich structure is
sometimes predicted for the order parameter’s spatial dependence, leading in some cases to
an unexpected symmetry breaking. We review one particular case which has been treated
in the literature [34, 35, 25]. Assume thatβ2 > 0, and that the order parameter has the
form η = (1, i)η0 in the absence of the vortex line. We now put in a vortex line parallel to
the ẑ-axis, centred on the linex = 0, y = 0. We will consider two separate cases: vortices
with clockwise and with anticlockwise flows. These two cases are quite different, since the
(1, i) state breaks time-reversal invariance.

Defining r = xx̂ + yŷ, we then have at larger,

η(r) = exp(±iθ)η0χ(r)(1, i). (58)

Here, θ is the polar angle in thexy-plane andχ(r) is a cylindrically symmetric function
which approaches unity at larger; the superfluid density tensor is isotropic in thexy-plane
for the (1, i) state, so the phase of the order parameter is simply±θ at large distances
from the vortex axis. So, at larger we simply have the bulk order parameter multiplied by
exp(±iθ). The question is, what happens to the order parameter asr decreases? Here are
the results.

(i) The exp(+iθ) vortex—for a range of parameters, the order parameter keeps the
cylindrically symmetric form (58) for allr; large values ofβ2/β1 tend to favour this.
However, for other ranges of coefficients, at smaller values ofr a complicated order
parameter structure develops which breaks the cylindrical symmetry. Instead, the core
region has a triangular pattern.

(ii) The exp(−iθ) vortex—for a certain range of parameters the order parameter keeps
the cylindrically symmetric form. But, for other coefficient choices, the core region is not
cylindrically symmetric, and adopts a crescent-shaped pattern.

We refer the reader to the literature for interesting pictures of these broken-symmetry
core regions [34]. Note that because of the exp(±iθ) factor, ηx and ηy must each vanish
at some point. However, they need not vanish at the same point, and so in some cases the
quantity |η|2 is never zero for the vortex line. One other point which should be stressed
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is that, if the superconductor is in the(1, i) state, the value ofHc1 will in general be
different forH ‖ ẑ and forH ‖ −ẑ. This is because the two vortex cases discussed in this
section will in general have different line energies. The value of the coefficientK2 − K3,
already discussed in the context of the intrinsic angular momentum, plays a key role in
these considerations [34].

5. Superconducting Fermi liquid theory

5.1. Introduction

The Ginzburg–Landau theory that we have been discussing is quite general, relying only
on very basic assumptions concerning the correlations present in the superconducting state.
However, there are a wide range of phenomena about which the GL theory is silent; these
phenomena require a more microscopic theory for their description. Even concerning GL
theory itself, we need a more microscopic theory to calculate the various coefficients which
arise, and to determine the range of validity of the GL description. For example, one could
ask: what is the shortest length scale at which the GL theory is valid?

A more microscopic theory also allows us to gain insight into the significance of thek-
dependence of1αβ(k). Recall that in the GL theory only the expansion coefficientsηi play
an explicit role. In this section we will see that various features of the order parameter’s
k-dependence are particularly important. Such features include whether the order parameter
vanishes at points ink-space, and whether it changes sign, or more generally its phase, as
k varies.

The trade-off is that a more powerful microscopic theory will usually be less general
than the GL approach. To develop such a theory, in the absence of a complete first-principles
solution, we must make a set of definite assumptions concerning the nature of the material;
such assumptions can of course then be tested by experiment. In this section we will
review the most fully developed such microscopic theory, the theory of a superconducting
Fermi liquid (SFL). This theory is essentially the original BCS theory, generalized to
unconventional order parameters and to arbitrary pairing mechanisms, presented with its
modern justification.

We should stress that the SFL theory is itself not the most microscopic approach. It
can only be justified by, and contains parameters which can only be calculated by, a more
fundamental theory. This will become clear as our exposition proceeds.

We refer the reader to the literature for a complete discussion of the SFL theory [18,
36–38]. Here, we briefly note that the essential idea is that at low temperatures the normal
state is taken to be a Landau Fermi liquid, in which the important excitations are long-lived
electronic quasiparticles which carry spin1

2 and charge−e. These are the usual Bloch
electrons of the normal state, given a sophisticated interpretation. It is assumed that there
is a well defined Fermi surface, which may have several disconnected pieces, and that
there is a characteristic normal-state energy scale called the Fermi energyEF . Finally, it
is necessary thatTc � EF ; physically, this means that the onset of superconductivity does
not significantly perturb the inner structure of the quasiparticles.

In the rest of this section we will review several illustrative applications of the SFL
theory. For clarity, we must establish our notation. The important point then is that in the
SFL, all of the action happens in the vicinity of the Fermi surface. We therefore label a
given point on this surface ink-space with a two-dimensional variables. For example, in
this theory only the value of the order parameter near the Fermi surface plays a role, so we
write 1αβ(s). When the Fermi surface is a sphere or a circle, it can be convenient to use
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k̂ to label Fermi surface points.
The Fermi surface integral of a functionF(s), denoted by〈F 〉, is given by

〈F 〉 =
∫

FS

d2s n(s)F (s). (59)

Here,n(s) is the differential density of states ats, normalized to one:∫
FS

d2s n(s) = 1. (60)

This integral is over the entire Fermi surface, including all disconnected pieces. We denote
the Fermi velocity ats by vF (s), and the total density of states at the Fermi surface for one
spin population byN(0). For simplicity, we will not include in what follows the Landau
quasiparticle interaction terms [36].

The most useful way to formulate the theory of the SFL is to use thermodynamic
Green’s functions, and a version of the Gorkov equations. Such a formulation makes it
straightforward to include impurity scattering, and to treat spatially inhomogeneous and
time-dependent situations. One particularly nice approach is the so-called quasiclassical
theory which takes advantage of the basic physical assumptions concerning the SFL to
achieve a simplification of the equations [18, 39–41].

Before proceeding, we should address the question of length scales. The basic,
temperature-independent coherence length,ξ0, is given by

ξ0 ∼ h̄vF

Tc

. (61)

The GL theory is valid on length scales greater thanξ0; this limit emerges from the derivation
of the GL theory from the SFL theory [42]. The SFL approach can handle length scales
shorter thanξ0, but is restricted to scales greater than the basic microscopic length of order
1/kF .

To illustrate the connection to the GL theory, we quote one set of results [41, 43]. For
a spin-singlet order parameter, belonging to a one-dimensional irreducible representation,
we show the SFL-derived formulae for the coefficients in the GL free energy (30), in the
absence of impurity scattering:

α = N(0)
T − Tc

Tc

(62)

β = 7ζ(3)N(0)

16(πTc)2
〈|φ|4〉 (63)

Kij = 7ζ(3)N(0)h̄2

8(πTc)2
〈vFivFj |φ|2〉. (64)

Here,φ(s) is the properly normalized (〈|φ|2〉 = 1) basis function.

5.2. The gap equation

As an important example, we consider the gap equation for a spin-singlet order parameter.
This will allow us to see how the group theoretical basis functions, which we have discussed
earlier, emerge from a more microscopic approach. In the SFL theory,1(s) plays the role
of an off-diagonal (in particle–hole space) self-energy. It is temperature dependent and
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vanishes atTc. It is determined, for a spatially homogeneous situation in the absence of
impurities, by the following equation [40]:

1(s) = N(0)πT
∑

|ε|<Ec

∫
FS

d2s ′ n(s ′)
V (s, s ′)1(s ′)

[ε2
n + |1(s ′)|2]1/2

. (65)

We have introduced the temperature-dependent Matsubara frequencies, given byεn =
(2n + 1)πT , where n is an integer [42]. The sum overεn has a cut-offEc, so that
|εn| < Ec; this cut-off should satisfy the following inequality:Tc � Ec � EF . We will
say more about this cut-off later.

The pairing potentialV (s, s ′) contains all the complicated interactions which go into the
off-diagonal self-energy [41]. An actual calculation of this quantity would require a more
fundamental theory. However, we can further analyse this effective potential as follows.
The pairing potential must have the symmetry of the normal state. Thus, for any operation
R of the point group we must have

V (Rs, Rs ′) = V (s, s ′). (66)

Group theory then tells us that we can expandV (s, s ′) in terms of basis functions as follows:

V (s, s ′) =
∑

µ

Vµ

∑
j

φµj (s)φ
∗
µj (s

′) (67)

where φµj (s) is a basis function for the irreducible representationµ. Note that each
irreducible representation may occur more than once in the sum.

The critical temperatureTc will be the highest temperature at which the gap equation
has a nonzero solution. To findTc we use the fact that the order parameter goes to zero
at the transition temperature; we can linearize the right-hand side of (65), and then expand
the order parameter in terms of the basis functions:

1(s) =
∑
µj

1µjφµj (s). (68)

We also use the orthonormality of the basis functions:∫
FS

d2s n(s)φ∗
µi(s)φνj (s) = δij δµν. (69)

We then get a separateTc for each representation. The physical transition temperature will
be the highest one, say forν, and we then have

Tc = 1.13Ec exp

( −1

N(0)|Vν |
)

. (70)

This is the usual BCS result, generalized to an arbitrary representation. Within the SFL
theory, the somewhat arbitrary parametersEc and Vν should disappear when computing
any other physical quantities. The correct procedure when doing theory at this level is to
eliminate these two parameters in favour of the measuredTc, using this equation. Thus,
this equation should not be viewed as a prediction of the transition temperature; rather, it
serves to eliminate the two unwanted parameters and replace them by a physical quantity.

At temperatures belowTc, we must treat the full nonlinear gap equation. The nonlinear
terms will have several effects. For a multidimensional representation, they will select
the proper linear combination of basis functions which make up the order parameter. The
nonlinear terms can also lead to other representations being mixed in with the one that
occurs right atTc. One other point should be noted; since it is a nonlinear equation, the gap
equation may have several inequivalent solutions (i.e. solutions not related by a symmetry
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operation) at a given temperature. The proper solution will then be the one with the lowest
free energy. For discussion on how to compute the free energy, see [41].

One important property of the basis functions should be stressed at this point; except
for the identity representation, the Fermi surface average ofφµj (s) is zero:∫

FS

d2s n(s)φµj (s) = 0 for µ 6= identity representation. (71)

This means thatφµj (s) must have a nontrivials-dependence, changing sign or phase in such
a way that the average vanishes.

5.3. The density of states

An important feature of the superconducting phase is that the number of low-energy states
available to the system, which is reflected in the density of statesNs(E), can be greatly
reduced. This need not always happen, as the case of gapless superconductivity shows
[44, 45]. The density of states has a great influence on many other quantities, such as the
superfluid density and the specific heat, and is itself an important experimental property.
(For discussion of the superfluid density, see [43, 46–49].) In this section we will review the
basic theory ofNs(E) for a pure system. In the next section we will discuss the effects of
impurity scattering on this quantity. When the order parameter is unconventional, impurity
scattering can have dramatic effects on the density of states. Our discussions ofNs(E) will
serve as an example of the role played by thek-dependence of the order parameter.

To compute the density of states, we first note that in the normal state we have well
defined single-particle states in the vicinity of the Fermi surface, with energiesε(k), where

vF (s) = 1

h̄
(∇kε)k=kF

. (72)

We will measureε(k) relative toEF , so thatε(s) = 0. Then, for a spin-singlet order
parameter, the elementary excitations in the superconducting state have doubly degenerate
energiesE(k) given by

E2(k) = ε2(k) + |1(s)|2. (73)

Here,s is the point on the Fermi surface in the direction ofk. The density of states is then
given by

Ns(E) =
∫

d3k

4π3
δ(E − E(k)) = 2N(0)E

∫
FS

d2s n(s)
2(E − |1(s)|)

[E2 − |1(s)|2]1/2
. (74)

Note that we have written the density of states in terms of a Fermi surface integral, and
that the step function2(x) restricts the integral to the parts of the Fermi surface where
E > |1(s)|. We can also see thatNs(E) depends only on the magnitude of the order
parameter,|1(s)|; when impurity scattering is present, this is no longer true.

Using this equation, we can consider several exemplary cases [2].

• Suppose that over the entire Fermi surface, the order parameter is constant, so that
|1(s)| = 10; then,Ns(E) = 0 for E < 10. We have

Ns(E) = 2N(0)
E

[E2 − 12
0]1/2

2(E − 10). (75)

• Suppose that1(s) vanishes at isolated points on the Fermi surface, and does so linearly.
For example, imagine that some piece of the Fermi surface can be parametrized by
spherical coordinatesθ andφ, and that the order parameter behaves as|1| = 10 sin(θ)

near the pointθ = 0. Then at small energies we haveNs(E) ∼ E2.
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• Another possibility is that the order parameter vanishes at lines on the Fermi surface. If,
for example, we can parametrize a piece of the Fermi surface by spherical coordinates
θ and φ, and1(s) = 10 cos(θ) near the lineθ = π/2, then we haveNs(E) ∼ E at
small energies.

• An interesting result can be found for a gap of the form1(s) = 10 sin2(θ) cos(2φ), for
a spherical Fermi surface. At low energies the density of states acquires a logarithmic
correction:Ns(E) ∼ E|ln(E)| [50].

Up to now, we have been treatingE(k) for a singlet order parameter. For triplet
superconductors, the spin structure of the order parameter adds an extra complication. For
a givenk, we have two excitations which are not necessarily degenerate. In terms of the
d-vector notation, we then get [2]

E2
±(k) = ε2(k) + |d(s) · d∗(s)| ± |d(s) × d∗(s)|. (76)

For unitary states, defined as those for whichd(s)×d∗(s) = 0, we have a doubly degenerate
spectrum, just as in the singlet case. For nonunitary order parameters, this degeneracy is
broken. For a simple example of how this works, consider an order parameter of the
following form:

d(s) = − (x̂ + iŷ)

2
10(s). (77)

This corresponds to an order parameter with1↑↑ = 10(s), and all other components equal
to zero. Our formula then givesE2

+ = ε2 +|10|2, E2
− = ε2. This result is easy to interpret;

the up spins have an energy gap, and the down spins do not. For more discussion of this
type of order parameter, see [51].

5.4. Impurity scattering

Scattering by ordinary nonmagnetic impurities can have many dramatic effects when the
superconducting order parameter has a strongk-dependence [52, 53]. Recall that, in the
absence of impurities, the density of states depends only on|1(s)|, and that this dependence
is quite simple to understand in terms of the spectrumE(k). Once impurity scattering is
introduced, the situation becomes much more interesting.Ns(E) can now depend strongly
on thek-dependent phase of the order parameter, as well as on its magnitude. The order
parameter no longer has a straightforward interpretation as an energy gap.

Here, we will briefly review this topic, without going into the technical details. Within
the SFL theory, impurity scattering is treated as follows [40, 41]. The superconductor
contains a densityc of impurities, which are randomly distributed. Each impurity has a
potentialv(s, s ′), which gives the amplitude for scattering of a quasiparticle froms to s ′ on
the Fermi surface. For simplicity, theorists often take this potential to be of s-wave form,
meaningv(s, s ′) = v; we will do so here.

Then, in the normal state the mean time between collisionsτ is given by

h̄

2τ
= cN(0)πv2

1 + (N(0)πv)2
. (78)

In the normal state, and for isotropic superconductors (i.e., those with1(s) = 10),
physical properties usually depend only onτ , and not on the separate values ofc andv. In
the case of unconventional superconductors this no longer holds [54]. It is thus convenient
to define another parameterσ as follows [55]:

σ = (N(0)πv)2

1 + (N(0)πv)2
. (79)
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This parameter measures the strength of the potential of a single impurity. The Born
limit (weak potential) corresponds toσ → 0, while the unitarity limit (strong scattering)
corresponds toσ → 1. One important term should also be introduced at this point. We
say that a superconductor is ‘gapless’ ifNs(E = 0) > 0, that is, if the density of states at
zero energy is not zero. A gapless superconductor, then, shares one key characteristic of a
normal Fermi liquid, namely a macroscopic value forNs(E = 0). Note that the two cases
discussed in the last section, withNs(E) ∼ E and Ns(E) ∼ E2 at low energies, are not
gapless according to this definition.

Having introduced the appropriate terminology, we can now discuss some of the effects
of impurity scattering on the density of states, the transition temperature, and the GL
coefficients.

To illustrate the density-of-states effects, we will quote some results for a specific
case [56], which has received much theoretical attention in the context of the high-Tc

superconductors. We consider a two-dimensional metal, with a circular Fermi surface, in
which the gap has point nodes. (This is analogous to line nodes for a three-dimensional
system.) We take an order parameter of the form

1(k̂) = 10(k̂
2
x − k̂2

y). (80)

Then, with no impurities,Ns(E) ∼ E at low energies. Whenσ = 1, the density of states
at E = 0, for a low concentration of impurities, is given by

Ns(E = 0) = 4N(0)γ

π10
ln

(
410

γ

)
(81)

whereγ is a new energy scale introduced by impurity scattering in the unitarity limit. It is
determined by solving the implicit equation

γ 2 ln

(
410

γ

)
= πh̄10

4τ
. (82)

In the Born limit (σ → 0), for small concentrations of impurities, the density of states at
E = 0 is given by

Ns(E = 0) = 16N(0)
τ10

h̄
exp

(
−πτ10

h̄

)
(83)

For small concentrations, such thatτ10/h̄ � 1, this Born limit answer, although not zero,
can be very small indeed.

The question arises of what are the crucial aspects of the form of the order parameter
which lead to these sometimes large impurity effects on the density of states. The order
parameter given by (80) has two key features: (I) its Fermi surface average vanishes,
reflecting the fact that the order parameter changes sign; (II) it goes to zero at points on the
Fermi surface. Recent work has shed light on this question by considering a family of order
parameters which have feature (I), but not feature (II) [55, 57]. This work shows that many
of the impurity effects are still present, even in the absence of nodes. Thus the vanishing
Fermi surface average plays a key role in enhancing the effects of impurity scattering.

We now review the effects of impurity scattering on the transition temperature. It turns
out that for s-wave impurities (recall, this means that we takev(s, s ′) = v), a very general
and universal answer emerges. Our discussion of the gap equation showed that atTc, the
order parameter belongs to one particular irreducible representation. For any nonidentity
representation, the transition temperature is lowered by the presence of impurities; the
equation determiningTc is given by [1, 53]

ln

(
Tc

Tc0

)
= ψ

(
1

2

)
− ψ

(
1

2
+ h̄

4πτTc

)
. (84)
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Here, Tc0 is the transition temperature in the absence of impurity scattering, andψ(x) is
the digamma function. This formula, for theTc-reduction from nonmagnetic impurities, is
exactly the same as the formula for theTc-reduction in an isotropic superconductor from
magnetic impurities [44], if the magnetic impurities are treated classically (i.e. if the Kondo
effect is not taken into account).

We conclude this section by discussing the coefficientK2 − K3, which played an
important role in the GL theory analysed in section 4. In turns out that, in the framework
of the SFL theory,K2 − K3 is equal to zero in the absence of impurity scattering [1].
There are two ways to try to get a nonzero value for this coefficient. One way is to add
in impurity scattering. The other way is to go beyond the approximations inherent in the
SFL theory; this is sometimes known as putting in strong-coupling effects. The effects of
impurity scattering onK2 − K3 have been addressed in several papers [1, 28, 58]. One
point that emerges from the calculations is that it can be necessary to go beyond the s-wave
impurity model in order to get a nonzero answer.

5.5. Single-impurity calculations

In contrast to the results discussed in the previous section, we can also treat a single, isolated
impurity immersed in a host superconductor. Many different aspects of the neighbourhood
of such an impurity may be investigated. The SFL theory can describe this situation on
length scales greater than 1/kF [59–61]. As a particularly interesting example, we consider
the following situation. Suppose that the superconducting order parameter is a complex
function ofk, and so breaks time-reversal symmetry in its spatial coordinates. An example
of this is the A-phase type of order parameter, familiar from superfluid3He, given by

d(k) = ẑ10(k̂x + ik̂y). (85)

The key point is that a pattern of supercurrents gets set up [59, 62], which is significant
out to distances of orderξ(T ) from the impurity. One effect of these currents is to create
a localized magnetic field. Thus, even a nonmagnetic impurity can lead to magnetic effects
when the order parameter breaks time-reversal symmetry.

The SFL theory allows us to compute these supercurrents,J(R). Note that for a
strongly type-II superconductor, the Meissner screening of these currents will be negligible.
The magnetic field at the impurity site (taken to beR = 0) is then given by

B(0) = 1

c

∫
d3R

R × J(R)

R3
. (86)

Herec is the speed of light. An estimate for the size of this field is given by [62]

|B| ≈ a(T )(ek2
F )

(
Tc

TF

)2(
vF

c

)
(σ ). (87)

In this formula,a(T ) is dimensionless, vanishes at the critical temperature, and is of order
one at lower temperatures. The quantityσ was introduced in the last section, and is a
measure of the strength of the impurity potential. Note that the factorek2

F has the dimensions
of a magnetic field, and can be quite large. However, it is reduced by the small factors
vF /c and(Tc/TF )2.

We can also investigate the net magnetic moment due to these impurity currents. It is
given by

M = 1

2c

∫
d3R R × J(R). (88)
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The surprising result is that, in a wide variety of cases, the current changes sign in such a
way that we obtainM = 0. This answer holds for any Fermi surface, order parameter, and
impurity potential, if certain assumptions hold. For a discussion of this issue, see [59, 63].

6. Conclusion

We hope to have provided some idea of the range of new phenomena which can arise in
a superconductor with an unconventional order parameter. Broadly speaking, these new
phenomena are due to two features of such order parameters. At the GL level, order
parameters requiring a multicomponent description lead to a more complex GL free-energy
functional. Such a free energy, which involves an intricate coupling of the vector potential
to the order parameter, leads to a number of perhaps surprising physical effects; section 4
presented a representative sample of these effects.

At the more microscopic level of the SFL description, it is thek-dependence of the order
parameter which is responsible for many new effects. The vanishing Fermi surface average
of any order parameter belonging to a nonidentity representation ensures a complicated
k-dependence. Section 5 provided a brief survey of phenomena at the SFL level.

One challenging aspect to this rich range of possible behaviour is that an interesting
experimental result can have many (perhaps too many!) different, mutually exclusive
explanations. The discussion given by Rainer [64], concerning the SFL theory itself,
makes a similar point. The joint efforts of theorists and experimentalists will be needed
to satisfactorily prove that phenomena in real physical systems are due to particular
unconventional order parameters.
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